Quantum Physics

Q1.			a clean metal surface in a vacuum is irradiated with ultraviolet radiation of a certain electrons are emitted from the metal.	
	(a)	(i)	Explain why the kinetic energy of the emitted electrons has a maximum value.	(2)
		(ii)	Explain with reference to the work function why, if the frequency of the radiation is below a certain value, electrons are not emitted.	,
		(iii)	State a unit for work function.	(2)
				(1)
	(b)	_	t energy is incident on each square millimetre of the surface at a rate of 10^{-10} J s ⁻¹ . The frequency of the light is 1.5×10^{15} Hz.	
		(i)	Calculate the energy of an incident photon.	
			answer = J	(2)
		(ii)	Calculate the number of photons incident per second on each square millimetre of the metal surface.	
			answer =	(0)
				(2)

(c)		e wave theory model of light, electrons on the surface of a metal absorb energy from a ll area of the surface.
	(i)	The light striking the surface delivers energy to this small area at a rate of $3.0 \times 10^{-22} \mathrm{J \ s^{-1}}$.
		The minimum energy required to liberate the electron is 6.8×10^{-19} J. Calculate the minimum time it would take an electron to absorb this amount of energy.
		answer =s
		(1)
	(ii)	In practice the time delay calculated in part c (i) does not occur. Explain how this experimental evidence was used to develop the particle model for the behaviour of light.
		(2) (Total 12 marks)

- **Q2.** When light of a certain frequency is shone on a particular metal surface, electrons are emitted with a range of kinetic energies.
 - (a) Explain
 - in terms of photons why electrons are released from the metal surface, and
 - why the kinetic energy of the emitted electrons varies upto a maximum value.

The quality of your written communication will be assessed in this question.

(b) The graph below shows how the maximum kinetic energy of the electrons varies with the frequency of the light shining on the metal surface.

(i) On the graph mark the *threshold frequency* and label it f_0 .

(1)

(ii) On the graph draw a line for a metal which has a higher threshold frequency.

(2)

(6)

(iii) State what is represented by the gradient of the graph.

.....

C)	maximum kinetic energy of emitted elections surface is double the threshold frequency	trons if the frequency of the light strikin	
		answer = J	(3) (Total 13 marks)

	The	quality of your written communication will be assessed in this question.
(b)	(i)	An alpha particle of mass 6.6×10^{-27} kg has a kinetic energy of 9.6×10^{-13} J. Show that the speed of the alpha particle is 1.7×10^7 m s ⁻¹ .

		(iii)	answer = Calculate the de Broglie wavelength of the alpha particle.	(3)
			answer = r	n (2) (Total 14 marks)
Q4.	the s	surfac	monochromatic light is shone on a clean metal surface, electrons are e due to the photoelectric effect.	e emitted from
	(a)	(i)	e and explain the effect on the emitted electrons of increasing the frequency of the light,	
		(ii)	increasing the intensity of the light.	(2)
				(2)

Calculate the momentum of the alpha particle, stating an appropriate unit.

(ii)

(b)	wher	wave model was once an accepted explanation for the nature of light. It was rejected not validated evidence was used to support a particle model of the nature of light. ain what is meant by validated evidence.	
			(2)
(c)	The	threshold frequency of lithium is 5.5×10^{14} Hz.	
	(i)	Calculate the work function of lithium, stating an appropriate unit,	
		answer	(3)
	(ii)	Calculate the maximum kinetic energy of the emitted electrons when light of frequency 6.2×10^{14} HZ is incident on the surface of a sample of lithium.	
		answer J (Total 12)	(3) 2 marks)

Q5.	(a)	When monochromatic light is shone on a clean cadmium surface, electrons with a	
		ge of kinetic energies up to a maximum of 3.51 \times 10 ⁻²⁰ J are released. The <i>work</i> ction of cadmium is 4.07 eV.	
	(i)	State what is meant by work function.	
			(2)
	(ii)	Explain why the emitted electrons have a range of kinetic energies up to a maximum value.	
			(4)
	(iii)	Calculate the frequency of the light. Give your answer to an appropriate number of significant figures.	
		answer = Hz	(4)
(b)	repl	rder to explain the photoelectric effect the wave model of electromagnetic radiation was aced by the photon model. Explain what must happen in order for an existing scientific bry to be modified or replaced with a new theory.	
			(2)
		(Total 12 ma	arks)

Q6. Figure 1 shows the energy level diagram of a hydrogen atom. Its associated spectrum is shown in **Figure 2**.

The transition labelled A in Figure 1 gives the spectral line labelled B in Figure 2.

Figure 1

-13.60 level 1 (ground state)

Figure 2

hydrogen spectrum showing some of the main spectral lines

(a) (i) Show that the frequency of spectral line B is about 4.6×10^{14} Hz.

.....

(ii) Calculate the wavelength represented by line B.

(3)

	(b)	The	hydrogen atom is excited and its electron moves to level 4.	
		(i)	How many different wavelengths of electromagnetic radiation may be emitted as the atom returns to its ground state?	
		(ii)	Calculate the energy, in eV, of the longest wavelength of electromagnetic radiation emitted during this process.	
				(2)
	(c)	cont	fluorescent tube, explain how the mercury vapour and the coating of its inner surface tribute to the production of visible light. You may be awarded additional marks to those wn in brackets for the quality of written communication in your answer.	
			(Total 8 mar	(3) rks)
Q7.	-	The d	iagram below shows part of an energy level diagram for a hydrogen atom.	
			n = 4 ——————————————————————————————————	
			n = 1 ——————————————————————————————————	
	(a)		level, $n = 1$, is the ground state of the atom. e the ionisation energy of the atom in eV.	
			answer = eV	(1)
	(b)		en an electron of energy 12.1 eV collides with the atom, photons of three different rgies are emitted.	

(i) On the diagram above show with arrows the transitions responsible for these PhysicsAndMathsTমাপেটেঙল

Q8.		Some tron in		answer = m (Total 9 m	(5) arks)
		ener	gy/10 ⁻¹⁷ J		
			0.00	ionisation level	
			-1.97	level D level C	
	(a)	(i)	-4.11State what is meant by the ionisa	,	
		(ii)		ergy, in eV, of an incident electron that could ionise	
					(2)

Calculate the wavelength of the photon with the smallest energy. Give your answer to an appropriate number of significant figures.

(ii)

	(b)		may be awarded marks for the quality of written communication in your answer to s (b)(i) and (b)(ii).	
		The	atom in the ground state is given 5.00×10^{-17} J of energy by electron impact.	
		(i)	State what happens to this energy.	
		(ii)	Describe and explain what could happen subsequently to the electrons in the higher energy levels.	
				(4)
	(c)	of th	tify two transitions between energy levels that would give off electromagnetic radiation ne same frequency. to	
			to (Total 8 mai	(2) rks)
Q9.			When free electrons collide with atoms in their <i>ground state</i> , the atoms can be excited onised.	
		(i)	State what is meant by ground state.	
				(1)

(ii)	Explain the difference between excitation and ionisation.	
	ntom can also become excited by the absorption of photons. Explain why only photons extain frequencies cause excitation in a particular atom.	
for a	ionisation energy of hydrogen is 13.6 eV. Calculate the minimum frequency necessary photon to cause the ionisation of a hydrogen atom. Give your answer to an opriate number of significant figures.	
	answerHz	

Q10.	(a) elec	A fluorescent tube is filled with mercury vapour at low pressure. In order to emit stromagnetic radiation the mercury atoms must first be <i>excited</i> .					
	(i)	What is meant by an excited atom?					
			(1)				
	(ii)	Describe the process by which mercury atoms become excited in a fluorescent tube.					
			(3)				
	(iii)	What is the purpose of the coating on the inside surface of the glass in a fluorescent tube?					
(b)		lowest energy levels of a mercury atom are shown in the diagram below. The diagram ot to scale.	(3)				
		energy / J × 10 ⁻¹⁸					
		n = 4 — — — — — — — — — — — — — — — — — —					
		n = 3 ——————————————————————————————————					
		ground state $n = 1$ ——————————————————————————————————					

	(i)	Calculation of the Calculation o	ate the frequen	cy of an em	itted phot	on due to 1	the transition	on level <i>n</i>	e = 4 to leve	el
					ar	oswar –			∐ 7		
					aı	15WEI =			1 12		(3)
	(ii)		an arrow on the wavelength tha						evel $n = 3$.	a (2) 12 marks)
Q11.	Т	he d	liagram	n shows some o	of the electro	on energy	levels of a	an atom.			
			level			ene	ergy/10 ⁻¹⁸ J				
			D -				-0.21				
			c -				-0.44				
			В-				-0.90				
	(groun	d stat	te) A -				-1.94				
	An inci	dent epre	electro sented	on of kinetic end in the diagram	ergy 4.1 × 10 and excites	0 ⁻¹⁸ J and an electi	speed 3.0 on in the a	× 10 ⁶ m s ⁻ atom from I	¹ collides evel B to	with the level D.	
	(a) F	or th	ne incid	dent electron, c	alculate						
	(1	i)	the kin	netic energy in e	eV,						

		(11)	the de Broglie wavelength.	
				(4)
	(b)		en the excited electron returns directly from level D to level B it emits a photon. culate the wavelength of this photon.	
			(Total 7 ma	(3)
			(Total / Tile	ai Kə
040		Λ	to a soul and all attentions the common colories. The de Dantie considerable of the all attention	
Q12.		A pro 2 × 10	oton and an electron have the same velocity. The de Boglie wavelength of the electron	
	(a)	Calc	culate,	
		(i)	the velocity of the electron,	
		(ii)	the de Broglie wavelength of the proton.	
				(4)
				(4)

(b)	(i)	State what kind of experiment would confirm that electrons have a wave-like nature. Experimental details are not required.				
	(ii)	State why it is easier to demonstrate the wave properties of electrons than to demonstrate wave properties of protons.				
		(2)				
		(Total 6 marks)				